Engineering Chemistry Diploma 1st year

Government Polytechnic Kendrapara Odisha Dr. Ayusman Swain Lecturer (Chemistry)

Ayusman Swain

1st year Each Semester distribution of marks

Theory	Practical & Seminars	Total
400	350	750

Engineering Chemistry Course

Theory	Practical	Total
100	100	
(20 + 80) Internal Assessment + End Sem Exam	(50 + 50) Sessional evaluation + Practical Exam	200

Units	Chapters	Periods
Physical Chemistry	6	22
Inorganic Chemistry	2	8
Organic Chemistry	1	10
Industrial Chemistry	5	20

- Purpose: Students must be acquainted with basic chemistry for Industrial applications.
- Knowledge on different Materials and Chemical changes

Ayusman Swain

A. PHYSICAL CHEMISTRY

Chapter 1: Atomic structure : Fundamental particles (electron, proton & neutron Definition, mass and charge). Rutherford's Atomic model (postulates and failure), Atomic mass and mass number, Definition, examples and properties of Isotopes, isobars and isotones. Bohr's Atomic model (Postulates only), Bohr-Bury scheme, Aufbau's principle, Hund's rule, Electronic configuration (up to atomic no 30).

Fu	ndamenta	al Particles		Neutrons
Particles	Relative Charge	Mass (amu)	Location	
Proton	+1	1	Inside Nucleus	Electrons – Nucleus
Electron	-1	0 .00055 or 0 (approx.)	Outside Nucleus	
Neutron	0	1	Inside Nucleus	
		<u> </u>	-	Schematic diagram of Helium (He) Orbital

1 a.m.u = 1.67 × 10⁻²⁴ grams.

The number of protons determines an element's atomic number (Z) and distinguishes one element from another.

```
e.g. Hydrogen: Proton =1, Atomic number (Z) =1
```

```
Carbon: Proton = 6, Atomic number (Z) = 6
```

Mass number (A) of an element is the sum of the number of protons and the number of neutrons.

```
e.g. Hydrogen: Proton = 1, Neutron = 0, Mass number (A) = 1
Lithium: Proton = 3, Neutron = 4, Mass number (A) = 7
Carbon: Proton = 6, Neutron = 6, Mass number (A) = 12
```

In a neutral atom: Number of Protons = Number of Electrons

The periodic Table

IA																	VIIIA
1 Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	² He Helium 4.002602
³ Li	Be											B	ໍດ	⁷ N	°O	F	[™] Ne
¹¹ Na	Beryllium 9.0121831											Boron 10.81	14 Si	Nitrogen 14.007	0xygen 15.999	Fluorine 18.996403163	^{Neon} 201797
Sodium 22.98976928	Mg Magnesium 24.305	3 IIIB	4 IVВ	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26.9815385	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45	Argon 39.948
¹⁹ K	°Ca	Sc	²² Ti	²³ V	°℃r	^{²⁵} Mn	°Fe	⁷ Co	²⁸ Ni	°Cu	[®] Zn	Ga	Ge	³³ As	°Se	³⁵Br	^³ Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933794	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
³⁷ Rb	[®] Sr	³⁹ Y	°r	^⁴ Nb	°Mo	⁴³ Tc	^₄ Ru	ឹRh	⁴⁶ Pd	^₄ ∕Ag	°°Cd	۱'n	ຶSn	^₅ Sb	⁵²Te	53	⁵⁴Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium	Ruthenium	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121,760	Tellurium 127.60	lodine 126.90447	Xenon 131.293
⁵⁵Cs	⁵Ba	57 - 71 Lanthanoids	[™] Hf	⁻³Та	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	" Ir	Pt	⁷⁹ Au	[⊮] Hg	⁸¹ TI	⁸² Pb	Bi	°⁴ Po	^⁵ At	[™] Rn
Caesium 132.90545196	Barium 137.327		Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.592	Thallium 204.38	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Radon (222)
⁸⁷ Fr	°₿Ra	89 - 103 Actinoids	°⁰	¹⁰⁵ Db	°⁵Sg	[™] Bh	Hs	Mt	¹¹⁰ Ds	Rg	¹¹² Cn	[™] Nh	[™] FI	Мс	Lv	¹¹⁷ Ts	[™] Og
Francium (223)	Radium (226)		Rutherfordium (267)	Dubnium (268)	Seaborgium (209)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

57 La Lanthanum 138.90547	Cerium Cerium	⁵⁹ Pr Praseodymium	⁶⁰ Nd Neodymium 144.242	Promethium	62 Sm Samarium 150.36	63 Europium 153,964	Gadolinium	Terbium	Dysprosium	67 Ho Holmium	68 Erbium 197259	Thulium	Ytterbium	Lutetium
Åc	⁹⁰ Th	Pa	02	⁹³ Np	0.4	05	96	97 Bk	98 Cf	⁹⁹ Es	100	^{108,93422}	¹⁰² No	103 Lr
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

Ayusman Swain

Atomic Mass Calculation

ATOMIC NUMBER	ELEMENT	Symbol	ATOMIC MASS	ATOMIC NUMBER	ELEMENT	Symbol	ATOMIC MASS
1	Hydrogen	Н	1.008	11	Sodium	Na	22.990
2	Helium	Не	4.0026	12	Magnesium	Mg	24.305
3	Lithium	Li	6.94	13	Aluminium	AI	26.982
4	Beryllium	Ве	9.0122	14	Silicon	Si	28.085
5	Boron	В	10.81	15	Phosphorus	Р	30.974
6	Carbon	C	12.011	16	Sulfur	S	32.06
7	Nitrogen	Ν	14.007*	17	Chlorine	Cl	35.45
8	Oxygen	Ο	15.999	18	Argon	Ar	39.948
9	Fluorine	F	18.998	19	Potassium	К	39.098
10	Neon	Ne	20.180	20	Calcium	Са	40.078

Q1. How many neutrons are there in Boron (B) nucleus?

a) 3
b) 5
c) 6
d) 10

Q2. Number of neutrons in C¹³ and N¹⁵ respectively are

- a) 7 and 8
- b) 7 and 7
- c) 6 and 8
- d) 7 and 9

Isotopes	Atoms or the elements with same atomic number but different mass number e.g. ${}^{1}H^{1}$, ${}^{1}H^{2}$, ${}^{1}H^{3}$. ${}^{6}C^{12}$, ${}^{6}C^{14}$,
Isobars	Atoms having the same mass number but different atomic numbers, e.g. ¹⁵ P ³² and ¹⁶ S ³²
Isotones	Atoms having the same number of neutrons but different number of protons or mass number, e.g. 6C ¹⁴ , 8O ¹⁶ , 7N ¹⁵
Isoelectronic	Atoms, molecules or ions having same number of electrons e.g. N^2 ,CO, CN^- . K^+ , Ca^{2+}
Isosteres	Molecules or ions having similar shape, same number of atoms and also same number of electrons are called isosteres. e.g., N ² and CO

Isotopes	Isobars		
	Chemicals elements which have the same atomic mass but different atomic numbers		
e.g. $_{1}H^{1}$, $_{1}H^{2}$, $_{1}H^{3}$. $_{6}C^{12}$, $_{6}C^{13}$, $_{6}C^{14}$,	e.g. $_{15}P^{32}$ and $_{16}S^{32}$. $_{18}Ar^{40}$ $_{19}K^{40}$ $_{20}Ca^{40}$		
Same chemical elements but in different forms	Chemical elements are different		

Q3. NO⁺ is isoelectronic with ____

a) N₂
 b) O₂
 c) C
 d) B

Q4. $_6C^{13}$ and $_7N^{14}$ are ____

- a) Isotopes
- b) Isosteres
- c) Isotones
- d) Isoelectronic

- 1. List out all the available isotopes of the elements from Atomic number 1 to 20.
- 2. Make a table of elements from Atomic number 1 to 30 with their symbol, atomic number and atomic mass.

Submit assignments (photo of hand written content) in Google classroom. Last date: Monday 7:00 PM

Go through the followings

- **1. Atomic Structure chapter from NCERT books.**
- 2. Atomic structure from 12th class text book (Kalyani Publishers)

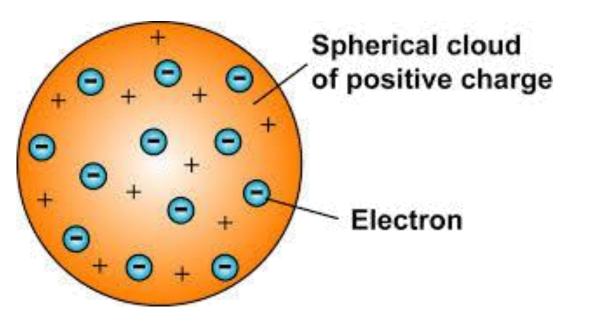
Download and grasp through the Chemistry syllabus for Diploma 1st year from SCTEVT website before reading books.

https://sctevtodisha.nic.in/en/student-welfare/?cat=diploma&unid=6677

A. PHYSICAL CHEMISTRY

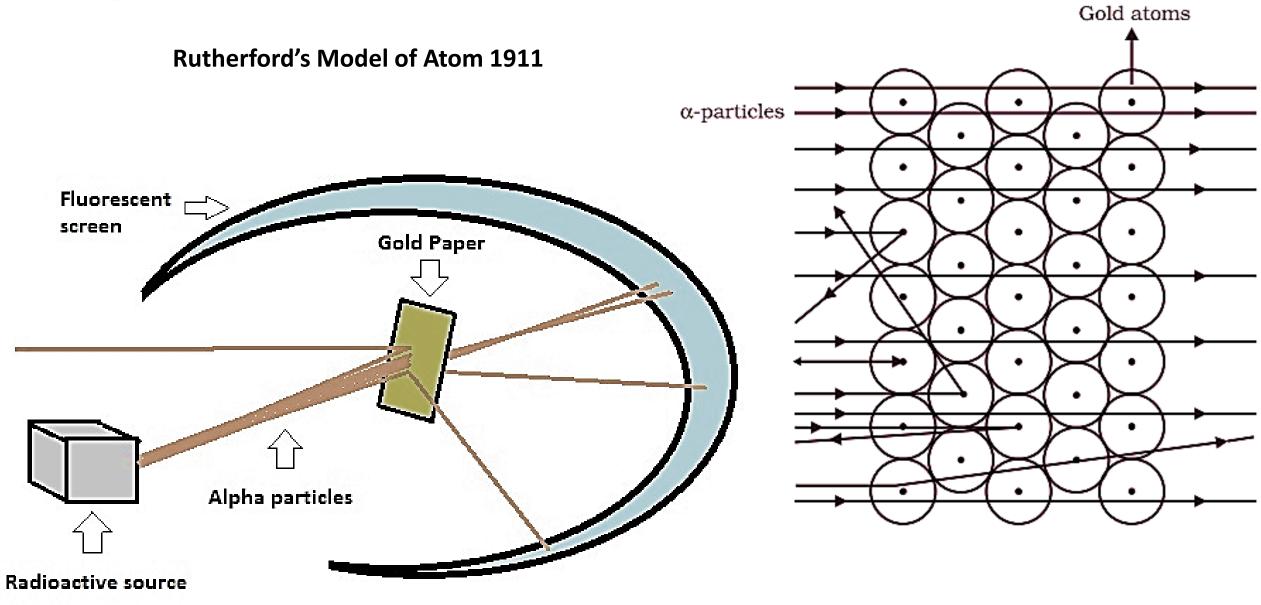
Chapter 1: Atomic structure : Fundamental particles (electron, proton & neutron Definition, mass and charge). Rutherford's Atomic model (postulates and failure), Atomic mass and mass number, Definition, examples and properties of Isotopes, isobars and isotones. Bohr's Atomic model (Postulates only), Bohr-Bury scheme, Aufbau's principle, Hund's rule, Electronic configuration (up to atomic no 30).

1. Explain the postulates of Rutherford's Atomic model.


- 2. State the failures of Rutherford's Atomic model. How Bohr rectified it.
- 3. Explain Bohr-Bury scheme.
- 4. Write notes on
 - a) Aufbau's principle
 - b) Hund's rule
- 5. Differentiate between Isotopes and Isobars with examples.

J.J. Thomson proposed in 1898

- Shape of atom is in a sphere of positive charge, while the electrons are embedded in the positively charged sphere.
- > The positively charged particles are uniformly distributed with electrons arranged in such a manner that the atom is electrostatically stable.


Limitations:

- The assumption that the total mass of an atom is uniformly distributed all over the atom was inconsistent with some experimental results.
- It also failed to explain an atom's stability.
- Unable to explain the scattering

Observations

- > Most of the fast moving α -particles passed straight through the gold foil.
- > Some of the α -particles were deflected by the foil by small angles.
- > One out of every 12000 particles appeared to rebound.

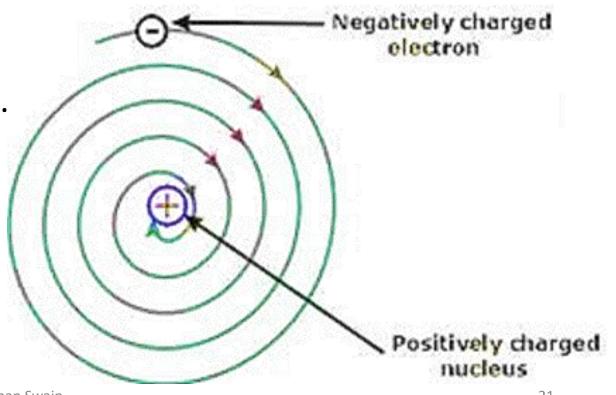
Conclusion

- Most of the space inside the atom is empty because most of the α-particles passed through the gold foil without getting deflected.
- Very few particles were deflected from their path, indicating that the positive charge of the atom occupies very little space.
- > A very small fraction of α -particles were deflected by the foil, indicating that all the positive charge and mass of the gold atom were concentrated in a very small volume within the atom.

Postulates

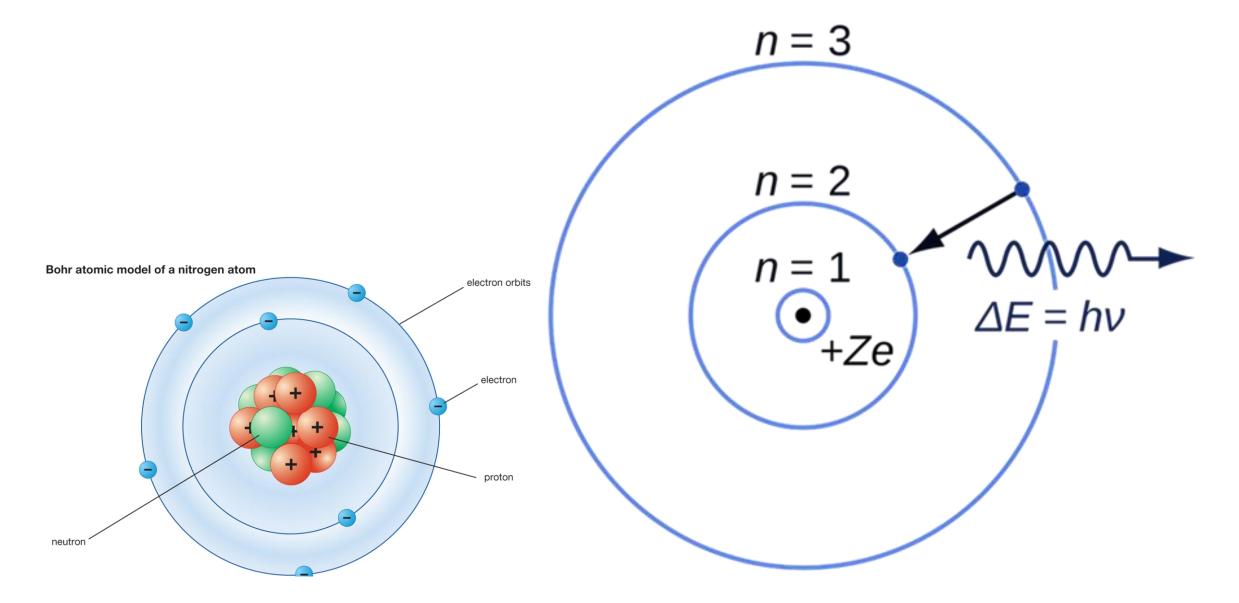
- There is a positively charged centre in an atom called the nucleus. Nearly all the mass of an atom resides in the nucleus.
- > The electrons revolve around the nucleus in circular paths.
- > The size of the nucleus is very small as compared to the size of the atom

Limitations


- A charged particle in a circular orbit would undergo acceleration would radiate energy. Thus, the revolving electron would lose energy and finally fall into the nucleus. If this were so, the atom should be highly unstable and hence matter would not exist in the stable form. But atoms are quite stable and thus this model fails to explain the stability of atom.
- > The model could not explain the spectra lines.

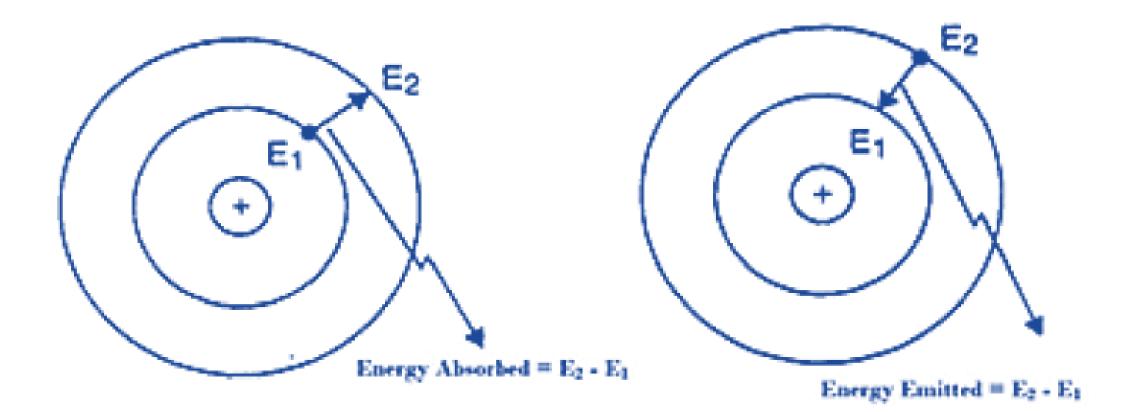
Limitations

- A charged particle in a circular orbit would undergo acceleration would radiate energy. Thus, the revolving electron would lose energy and finally fall into the nucleus. If this were so, the atom should be highly unstable. But atoms are quite stable and thus this model fails to explain the stability of atom.
- > The model could not explain the spectra lines.



Postulates

- Only certain special orbits known as discrete orbits of electrons, are allowed inside the atom.
- While revolving in discrete orbits the electrons do not radiate energy. These orbits or shells are called energy levels.
- These orbits or shells are represented by the letters K,L,M,N,... or the numbers, n=1,2,3,4,....
- The electrons in an atom move from a lower energy level to a higher energy level by gaining the required energy and an electron moves from a higher energy level to lower energy level by losing energy.



<

1913- Bohr's Atomic Model

Postulates

> The energy of nth orbit or shell is:

$$\mathsf{E}_{\mathsf{n}} = - \frac{2\pi^2 m e^4 z^2}{n^2 h^2}$$

where, m = mass of an electron e = charge of electron z = Atomic number n = No. of shell or principal quantum number (1,2,3.....) h = Planck's constant = 6.625 x 10⁻²⁷ erg sec.

For H atom Z = 1. So Energy of nth orbit is

radius of orbit =
$$r = \frac{n^2 h^2}{4\pi^2 m e^2} \times \frac{1}{Z}$$

$$\mathsf{E}_{\mathsf{n}} = -\frac{1312}{n^2} \ KJ / Mol_{\mathsf{n}}$$

Postulates

> The energy of shell increases on moving from lower to higher.

> Through a large number of concentric circles are possible around the nucleus, only those circular paths are allowed for the electrons to revolve for which the angular momentum value (mvr) is a whole number multiple of $h/2\pi$

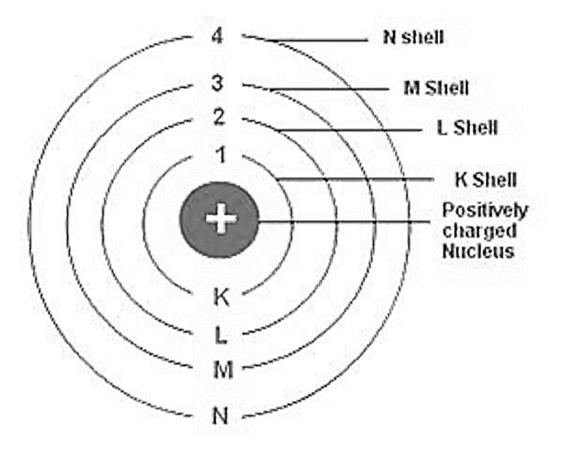
mvr = nh/2 π

Here, m = mass of the electron,

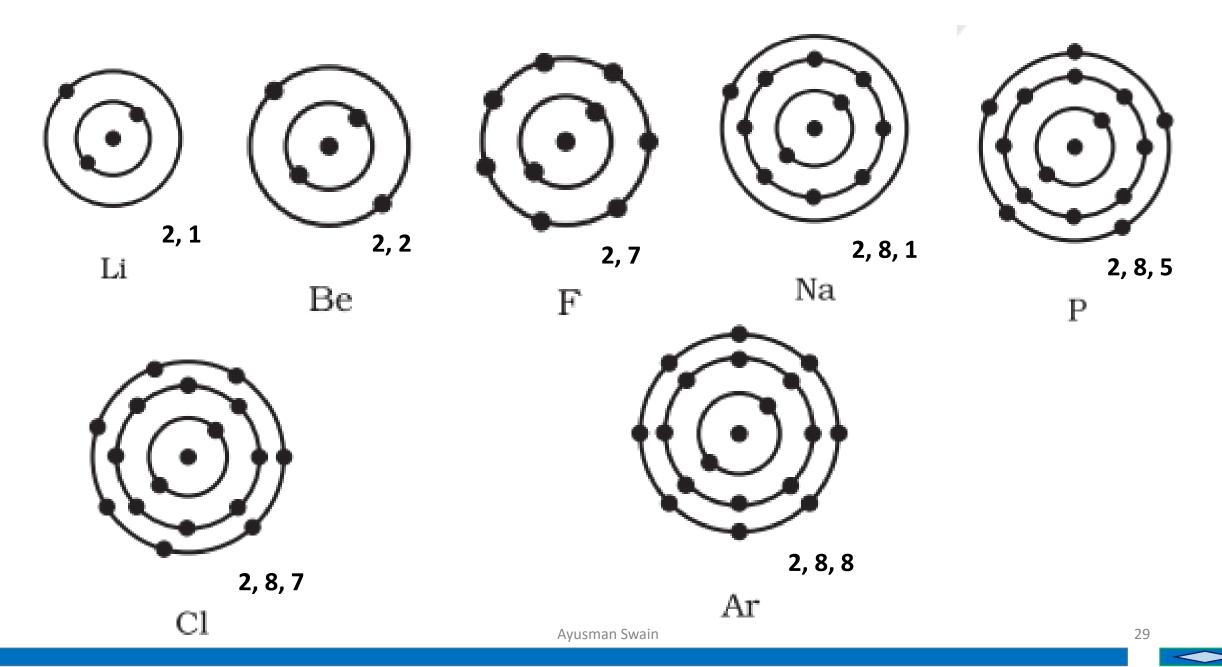
- v = Angular velocity of the revolving electron,
- r = radius of the orbit.
- h = Planck's constant

Limitations

- According to Bohr's atomic model, the electrons revolve in two-dimensional circular orbit. But modern researches such as Heisenberg's Uncertainty Principle revealed that electrons revolve in three dimensional paths called orbitals.
- > It fails to explain the spectra of multi-electron species.
- > It fails to explain the relative intensities of spectral lines.
- It fails to explain the splitting up of spectral lines when exposed to electric field (Stark Effect) and magnetic field (Zeeman Effect).
- > It fails to explain the cause of chemical combinations.



Bohr-Bury suggested How are the electrons distributed in different orbits


Maximum number of electrons in an orbit = 2n²

Orbit	Value of n	Maximum no. of electrons in the orbit
K	1	2 × 1 ² = 2
L	2	$2 \times 2^2 = 8$
Μ	3	$2 \times 3^2 = 18$
Ν	4	$2 \times 4^2 = 32$

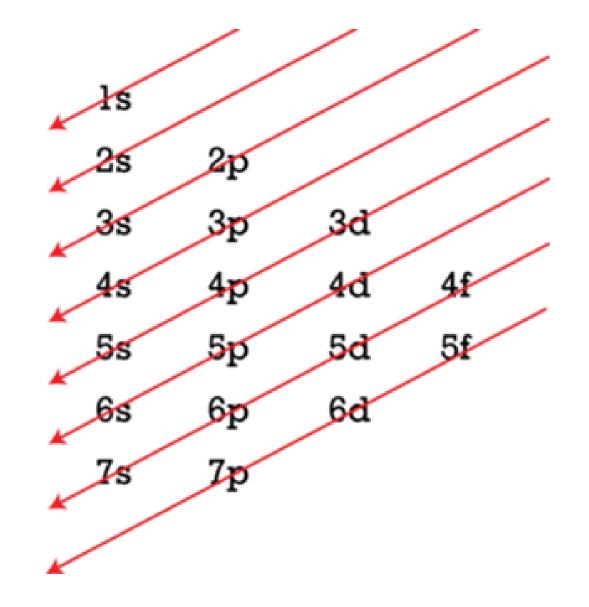
Bohr-Bury scheme

Orbit	Value of 'n'	Maximum no. of electrons in the orbit	Subshell	Maxin Capa
К	1	2 × 1 ² = 2	1s	s = p =
L	2	$2 \times 2^2 = 8$	2s 2p	d = f = :
Μ	3	$2 \times 3^2 = 18$	3s 3p 3d	
N	4	2 × 4 ² = 32	4s 4p 4d 4f	

Rule: Maximum number of electron in a subshell = 2 (2l + 1)

Sub-shell		Maximum electrons
S	0	2(2(0)+1)=2
р	1	2(2(1)+1)=6
d	2	2(2(2)+1)=10
f	3	2(2(3)+1)=14

Shell	Subshell	Total Number of Electrons in Shell
1st Shell K	1s	2
2nd Shell L	2s, 2p	2 + 6 = 8
3rd Shell M	3s, 3p, 3d	2 + 6 + 10 = 18
4th Shell N	4s, 4p, 4d, 4f	2 + 6 + 10 + 14 = 32



Aufbau principle

The Aufbau principle states that an electron occupies orbitals in order from lowest energy to highest.

Or

In the ground state of an atom or ion, electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels.

- The order in which the energy of orbitals increases can be determined with the help of the (n+l) rule, where the sum of the principal and azimuthal quantum numbers determines the energy level of the orbital.
- Lower (n+l) values correspond to lower orbital energies. If two orbitals share equal (n+l) values, the orbital with the lower n value is said to have lower energy associated with it.
- The order in which the orbitals are filled with electrons is: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, and so on.

Energy order of sub-shell

n+l rule

1s: 1 + 0 = 1 2p: 2 + 1 = 3 3d: 3 + 2 = 5

Sub-shell →	1 s	2 s	2р	3 s	Зр	3d	4s	4р	4d	4f	5s	5р	5d
(n+l)	1	2	3	3	4	5	4	5	6	7	5	6	7

Energy increasing order: 1s < 2s < 2p < 3s < 3p <4s <3d < 4p < 5s < 5p < 4d < 4f

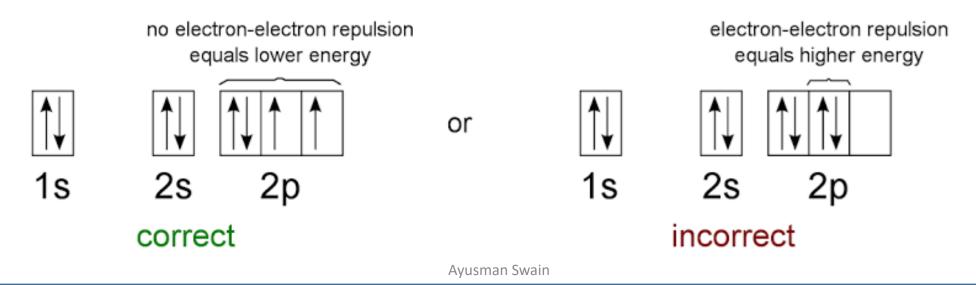
	A AND A CONTRACT	
	A A A A A A A A A A A A A A A A A A A	

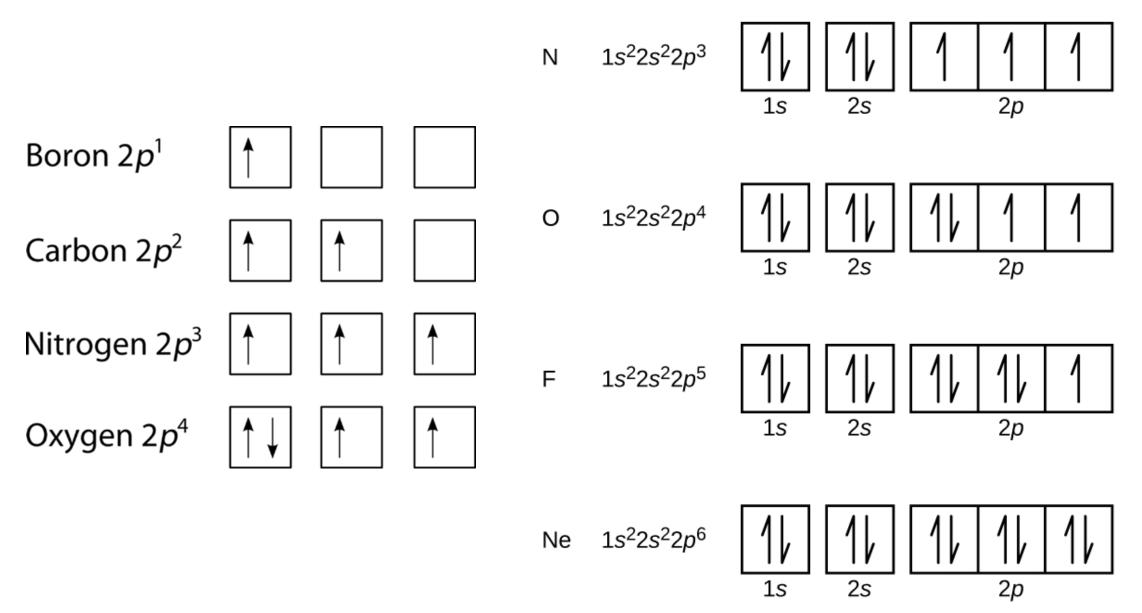
Atomic N	lumber Nam	e of the Element		tronic guration
1	H	Hydrogen (H)	-	ls ¹
2		Helium (He)		1s ²
3		Lithium (Li)	[He	e] 2 s ¹
4	В	eryllium (Be)	[He	$e] 2s^2$
5		Boron (B)	[He]	$2s^2 2p^1$
6		Carbon (C)	[He]	$2s^2 2p^2$
7		Nitrogen (N)	[He]	$2s^2 2p^3$
8		Oxygen (O)	[He]	$2s^{2} 2p^{4}$
9		Fluorine (F)	[He]	$2s^2 2p^5$
10		Neon (Ne)	[He]	$2s^2 2p^6$

Element No.	Name	Full Configuration	Shorthand Configuration
11	Sodium	1s ² 2s ² 2p ⁶ 3s ¹	[Ne] 3s ¹
12	Magnesium	1s ² 2s ² 2p ⁶ 3s ²	[Ne] 3s ²
13	Aluminum	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	[Ne] 3s ² 3p ¹
14	Silicon	1s ² 2s ² 2p ⁶ 3s ² 3p ²	[Ne] 3s ² 3p ²
15	Phosphorus	1s ² 2s ² 2p ⁶ 3s ² 3p ³	[Ne] 3s ² 3p ³
16	Sulfur	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne] 3s ² 3p ⁴
17	Chlorine	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	[Ne] 3s ² 3p ⁵
18	Argon	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	[Ne] 3s ² 3p ⁶

Assignment: Write the electronic configuration from elements 1 to 30.

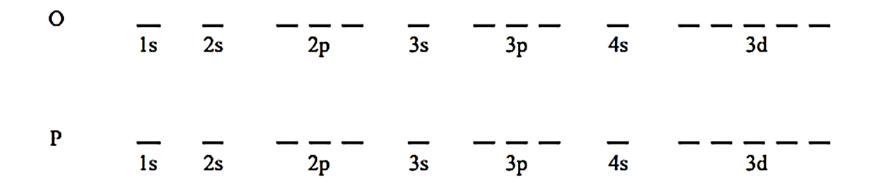
Atomic No.	Element	Symbol	Electronic Configuration
1			
2			
3			
4			


Anomaly in Electronic configuration of Cr and Cu


Hund's rule states that:

- > The greatest value of spin multiplicity has the lowest energy term.
- Every orbital in a sublevel is singly occupied before any orbital is doubly occupied.
- All of the electrons in singly occupied orbitals have the same spin (to maximize total spin).

Hund's Rule



1. Arrange the following in increasing order of energy

2s, 2p, 5d, 4p, 6s, 3d, 5p, 4f, 6p, 3p,

2. Fill the electrons in the sub-shells

Atomic number and Elements	Electronic Configuration
1 Hydrogen, H	1s ¹
2 Helium, He	1s ²
3 Lithium, Li	1s ² 2s ¹
4 Beryllium, Be	1s ² 2s ²
5 Boron, B	1s ² 2s ² 2p ¹
6 Carbon, C	1s ² 2s ² 2p ²
7 Nitrogen, N	1s ² 2s ² 2p ³
8 Oxygen, O	1s ² 2s ² 2p ⁴
9 Fluorine <i>,</i> F	1s ² 2s ² 2p ⁵
10 Neon, Ne	1s ² 2s ² 2p ⁶

Atomic number and Elements	Electronic Configuration
11 Sodium, Na	1s ² 2s ² 2p ⁶ 3s ¹
12 Magnesium, Mg	1s ² 2s ² 2p ⁶ 3s ²
13 Aluminium, Al	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
14 Silicon, Si	1s ² 2s ² 2p ⁶ 3s ² 3p ²
15 Phosphorus, P	1s ² 2s ² 2p ⁶ 3s ² 3p ³
16 Sulfur, S	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴
17 Chlorine, Cl	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
18 Argon, Ar	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
19 Potassium, K	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹
20 Calcium, Ca	1s²2s²2p ⁶ 3s²3p ⁶ 4s²

Atomic number and Elements	Electronic Configuration
21 Scandium, Sc	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹
22 Titanium, Ti	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ²
23 Vanadium, V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³
<mark>24</mark> Chromium, Cr	<mark>1s²2s²2p⁶3s²3p⁶4s¹3d</mark> ⁵
25 Manganese, Mn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵
26 Iron, Fe	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶
27 Cobalt, Co	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷
28 Nickel, Ni	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸
<mark>29</mark> Copper, Cu	<mark>1s²2s²2p⁶3s²3p⁶4s¹3d¹⁰</mark>
30 Zinc, Zn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰

End of Chapter1

Refer notes and materials provided in Google classroom

